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A proposed modification to the dynamic approach
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SUMMARY

In this paper a modification related to the scale-invariancy condition, based on a simple dissipation argument
coupled with the hypothesis of Chen et al. (J. Fluids Eng. 2005; 127:840–850), is proposed for the dynamic
model coefficient evaluation approach. The modification is applied to the Smagorinsky model and used in
the calculations of low Reynolds number (Re� = 180) channel flow, where the scale-invariancy assumption
of the dynamic approach is expected to fail along the wall-normal direction. A detailed analysis of the results
is performed for the mean velocity profile, dissipation characteristics, second and higher order statistics,
and the energy spectra. The results are compared with the Smagorinsky, the dynamic Smagorinsky, no
model, the modification proposed by Meneveau and Lund (Phys. Fluids 1996; 9(12):3932–3934), and
the DNS data. The proposed modification yields a better model coefficient profile and shows definitive
improvement of the results for all flow statistics considered. Copyright q 2007 John Wiley & Sons, Ltd.
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1. INTRODUCTION

Accurate numerical simulation of turbulent flows requires resolution of a wide range of scales of
motion. For complex turbulent flows the range of scales can be large, which makes direct numerical
simulation (DNS) infeasible. The alternative approach, which has emerged in the past few decades,
is the large Eddy simulation (LES). The philosophy of LES is to capture only the relevant turbulent
scales of motion and to model effects of the remaining scales as subgrid stresses (SGSs) [1–4].
Several linear and non-linear models have been proposed for the modelling of SGSs to capture
the energy transfer between subgrid and resolved scales of motion accurately [1, 5]. Despite the
complexity, all models require specification of model coefficients. Although the coefficients can
be evaluated analytically based on canonical theory, these coefficients are seldom found to be
universal. In this regard, dynamic evaluation of the model coefficient is one of most important
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breakthroughs in the SGS modelling. Interested readers are referred to Wang and Bergstorm [6]
and others [7–10] for a review on the topic.

The dynamic approach was originally proposed for the Smagorinsky (eddy viscosity) model
[7, 11], but since has been applied to several non-linear models [12–15]. The main advantage of
the dynamic approach is its capability to adjust the model coefficient in the near wall region and the
transition zone [16–19], and thus has been applied successfully to complex engineering problems
[1, 19–22]. The dynamic approach, although based on simple physical and mathematical reasoning,
involves several open issues such as specification of the filter width ratio [7, 10, 23–25], averaging
operation [11, 18], filtering operation [8, 26, 27], and the scale-invariancy assumption [20, 28, 29].
The purpose of this paper is to propose a scale-variancy condition for the dynamic approach coupled
with the recent hypothesis of Chen et al. [29].

The dynamic approach involves three fundamental assumptions: (1) both the subgrid filter and
secondary filter width lie in the inertial subrange; (2) model coefficients are independent of the
filtering [6, 8]; and (3) model coefficients at both the subfilter and secondary filter scales are
the same (scale-invariance) [19]. The first assumption is associated with the inherent philosophy
of the LES and may be violated only if the grid resolution is too coarse. This assumption thus
imposes a restriction on the grid resolution (and the secondary filter width) requirement for the
LES. The second assumption has been addressed by several researchers such as Ghosal et al. [8]
and recently by Wang and Bergstrom [6]. However, in the most commonly used version of the
dynamic approach, the model coefficient is averaged along the homogeneous direction(s). This
eliminates any (spatial) local variations of the model coefficients, thereby satisfying the above
assumption. Most critical of these assumptions is the scale-invariancy condition, which fails for
the low Reynolds number flows and in the wall region. Meneveau and Lund [28] and Carati and
Eijenden [23] reported strong dependence of the dynamic model coefficient on grid resolution
for the low Reynolds number isotropic turbulence case. Similar results were also obtained by
Wang and Bergstrom [6] for the channel flow simulation. Interested readers are also referred to
Porte-Agel et al. [20] for more discussion on this issue. To address this drawback Meneveau and
Lund [28] obtained an analytic form of the scale-variancy condition following Voke [30]. Porte-Agel
et al. [20] introduced second test filtering to compute the scale-variancy condition dynamically,
which was also adopted by Tejada-Martinez and Jansen [25]. This paper proposes a simple form of
the condition based on the dissipation argument. One should expect correct variation of the model
coefficient (and proper amount of subgrid stress (SGS) dissipation) along inhomogeneous direction
from a scale-variant dynamic model, which is not accounted by the standard dynamic approach.

Apart from the above-mentioned assumptions, the actual implementation of the dynamic ap-
proach has also been widely studied. One of the important parameter that has received considerable
attention is the optimal filter width ratio [7, 18, 23–25]. Meyers et al. [10] suggested the use of
a filter width ratio greater than 4, whereas Tejada-Martinez and Jansen [25] introduced dynamic
evaluation of the ratio. However, in most of the application [20, 22] the ratio is assumed to be 2,
as suggested by Germano et al. [7], which is found to be the most robust value. The effect of the
filtering and averaging operation has also been studied in detail by several researchers [18, 26–28]
both from implementation and stability point of view.

Chen et al. [29] (also cf. Bou-Zeid et al. [31]) recently provided further insight into the dynamic
modelling approach. Their main conclusion, based on the a priori test for plane strain flow, is that
the model coefficient obtained from the dynamic approach (based on scale-invariancy) correlates
well with the coefficients at the test filter scale (of width twice that of filter scale). If the scale-
invariance conditions were to hold (such as high Reynolds number isotropic turbulence) then this
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MODIFICATION TO THE DYNAMIC APPROACH 1077

result is of no significance. However, for the low Reynolds number flows or in wall bound flows,
the above hypothesis can be coupled with the scale-variancy condition (a posteriori‡) to obtain
the model coefficient. This approach seems more attractive, over the a priori§ approach, as the
robustness of the dynamic methodology is retained. Based on the numerical experiments performed
here, it was found that the application of the scale-variancy condition a priori leads to numeri-
cal instability (negative model coefficients) or requires clipping as suggested by Meneveau and
Lund [28].

In this paper, Chen et al. [29] hypothesis has been coupled with a dissipation-based scale-
variancy condition. The details of the formulation are presented in the following section. The
approach has been tested for the dynamic Smagorinsky model. Although the linear model suffers
from the drawbacks e.g. the stress and strain-rate tensor are parallel [3–5], they remain the most
commonly used model for engineering applications [20–22]. Present results thus forms the first
step in validation of the approach and can also be easily extended to non-linear models. The first
case that has been considered, in Section 3, is the isotropic decaying condition at high Reynolds
number, where scale invariancy is expected. This test is important to gain confidence on the
dynamic approach and to quantify the divergence from the scale invariancy. This case also provides
the contrast for the inhomogeneous flows which is considered next in Section 4, where the model
is used in plane channel flow simulation at low Reynolds number (Re� = 180). This case represents
an ideal case because of the variation of length scale normal to the wall, explicit dependence of
the flow on molecular viscosity and availability of the DNS data [32]. The model results have been
compared in details with the standard dynamic model, the Smagorinsky model, the no-model and
Meneveau–Lund [28] scale-variancy relation and the DNS data [32]. The results are summarized
and some conclusions are drawn in Section 5.

2. NUMERICAL SIMULATION

The governing equations for LES are obtained by filtering the Navier–Stokes equations, which for
the incompressible flows are (cf. Bhushan and Warsi [4] for symbol notation):

div û= 0

�û
�t

+ (û · grad)û= −grad p̂ + � div(grad û) − div(s)
(1)

where s= ûu − ûû is the SGS tensor which needs to be modelled. The methodology adopted for
modelling the SGS in the present paper is discussed below. For brevity, the models have also been
summarized in Table I.

2.1. Smagorinsky model

s= − 2Cs�
2[2D̂:D̂]1/2D̂ (2)

‡A posteriori coupling of the scale-invariancy condition refers to the approach when the model coefficient is modified
after the dynamic model coefficient evaluation.
§A priori application of the scale-invariancy condition is referred to the approach when the tensor Mi j Equation (7)
in dynamic approach is modified.
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Table I. SGS model formulation.

Model

Smagorinsky Cs = 0.01,�: Equation (3)
Dynamic model Cs�2: Equations (7)–(9)
Meneveau Cs�2: Equations (7), (10) and (9)
Scale invariant (a priori) Cs�2: Equations (7), (11) and (9)

Scale invariant (a posteriori) C �̃
s �2: Equations (7), (8) and (12); C �̃

s

C �̂
s
: Equation (11)

where � is the subgrid filter width which is related to the grid scale, Cs is the suitable value of the
model coefficient (assumed constant), and D is the strain-rate tensor. The filter width is damped
close to the wall using the Van-Driest function which yields

�=[1 − exp(−y+/25)](�x · �y · �z)1/3 (3)

where �x , �y, and �z are grid sizes in the streamwise, wall-normal, and spanwise directions
respectively.

2.2. Dynamic model

The dynamic approach uses the relation between the stresses at two filter levels

Ti j − �̃i j = Li j = ˜̂ui û j − ˜̂ui ˜̂u j (4)

where the stresses at the secondary filter (�̃) level can be modelled similar to that of the primary
filter [7]

T=−2C �̃
s �̃

2[2 ˜̂D : ˜̂D]1/2 ˜̂D (5)

The unknownmodel coefficientCs can thus be obtained byminimization of the error (�E2/�Cs)[11],
E=L + 2Cs�

2M (6)

where

M=
(
C �̃
s

Cs

)(
�̃
2

�2

)
[2 ˜̂D : ˜̂D]1/2 ˜̂D − ˜[2D̂ : D̂]1/2D̂ (7)

In the standard dynamic approach scale-invariancy condition is imposed i.e.

C �̃
s

Cs
= 1 (8)

and the most suitable value of the filter widths is found to be �̃/�= 2. The dynamic model
coefficients are hence obtained as

Cs�
2 =− 〈Li j Mi j 〉

2〈Mi j Mi j 〉 (9)
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As evident the dynamic approach does not require external specification of filter width or use of
ad hoc wall damping function.

2.3. Meneveau and Lund modification

Meneveau and Lund [28] following Voke [30] proposed the following scale-variancy condition:

C �̃
s

Cs
= 10−3.23[Re−0.92

�̃
−Re−0.92

� ] (10)

where Re� =�2 · [2D : D]1/2/�.

2.4. Proposed modification

According to the hypothesis of LES that both the primary and secondary filter widths lie in the
inertial subrange, where only energy cascade occurs, the subgrid scale dissipation (−s : D) at both
the subgrid and secondary filter scales must be equal. This provides the following relation between
the model coefficients in lieu of Equation (10):

C �̃
s �̃

2〈[2 ˜̂D : ˜̂D]〉(3/2) =Cs�
2〈[2D̂ : D̂]〉(3/2) (11)

The above scale-variancy relation is actually a numerical counterpart of the Voke’s [30] expression
or Meneveau–Lund [28] curve fitting. Also note that the averaging operator 〈·〉 and the power has
been interchanged [28].

2.5. Chen et al. hypothesis

Recently, Chen et al. [29] showed that the dynamic approach provides the model coefficient which
correlates much better with the coefficient at the secondary filter width (of size twice that of primary
width), i.e.

C �̃
s �2 =− 〈Li j Mi j 〉

2〈Mi j Mi j 〉 (12)

The suitable model coefficient at grid scale, Cs, is obtained by introducing Equation (12) in the
scale-variancy relation, i.e. Equation (11), where the suitable filter width ratios have to be specified.

3. ISOTROPIC DECAYING TURBULENCE

The motivation of these controlled numerical experiments is to compare the analytic model coef-
ficient with that of the dynamic approach and to quantify the divergence from the scale-invariancy
condition. For this purpose numerical simulation of the isotropic decaying turbulence based on
the experiment of Kang et al. [14] is performed, which corresponds to the Reynolds number of
2.472× 104, at three grid resolutions 323, 483, and 643 (after dealiasing). As the grid scales are
large (enough) relative to the dissipation length scale [14], scale-invariancy conditions should hold
leading to consistent dynamic model coefficients for all three grid resolutions, and close to analytic
value.
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The governing equations are solved using pseudo-spectral methods, using 3
2 -rule for dealiasing[4]. The initial energy spectra was obtained from the experiment [14] (at x/M = 20) and filtered

using Gaussian function [2], which was then superimposed with random phase perturbation [4] for
velocity initialization. Because of the sharp-cutoff filtering inherent in the numerical discretization,
the resulting primary filter function is a convolution of the Gaussian and sharp-cutoff filter. The
primary filter width was thus chosen such that the filter transfer function at cutoff, G(�c), is
0.8 [25]. This corresponds to �= 1.358 · h, where h is the grid scale. The secondary filter for the
dynamic approach was also specified to be Gaussian with width twice of the primary filter, which
leads to the filter width ratio (�̃/�)2 of 5, because of the property of the smooth filter.

To evaluate the Smagorinsky model coefficient we use the isotropic turbulence theory (canonical
case) [4], which gives the following relations:

� =Csh
2〈2Di j Di j 〉(3/2) (13)

where

〈2Di j Di j 〉 = 15

〈(
�û1
�x1

)2
〉

(14)

For the given filter function we can estimate,

〈(
�û1
�x1

)2
〉

= 2

15

∫ �c

0
�2Ê(�) d�

= 122/3

h4/3

[
�

(
2

3
; �2

12

)
Ck

15

]
�2/3 (15)

where �c = �/h and the filtered energy spectra, Ê(�), is based on the inertial subrange power law
(�−5/3). Ck and � are the Kolmogrov’s constant and dissipation, respectively. Interested readers are
referred to Bhushan and Warsi [4] for more details of the calculation. This gives the Smagorinsky
model coefficient for the filter width � to be Cs = 0.0255. Similarly, the dynamic approach provides
the coefficient Cs · h2 which were then modified to Cs ·�2. The model coefficients were allowed to
evolve and once they reached a quasi-steady state, the simulations were restarted with the velocity
field rescaled to the initial energy spectrum.

The energy spectra for the finest grid resolutions are presented in Figure 1, where they compare
well with the (filtered) experimental spectra of Kang et al. [14] (at x/M = 30). The results of
the constant coefficient Smagorinsky and dynamic models are almost same. Further, the dynamic
coefficients in all the three grid resolutions are within ±5% of the Smagorinsky coefficient as shown
in Table II. Thus as expected, the dynamic approach works perfectly well when the assumptions

of scale-invariancy holds. The proposed scale-variancy function, i.e. C �̃
s /C�

s , was also evaluated
a posteriori from Equation (11), which showed that for the 483 and 643 grids the ratio was within
±7% of the scale-invariant value. However, the variation was large (about 27%) for the coarse grid
of 323. This divergence can be attributed to the fact that the secondary filter width for the coarse
grid does not lie in the inertial subrange. The scale-invariant model was used for the finest grid
resolution where the results agree well with the dynamic approach.
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MODIFICATION TO THE DYNAMIC APPROACH 1081

Figure 1. (Filtered) Energy spectra corresponding to x/M = 30 in experiment [14] compared with the
Smagorinsky, dynamic Smagorinsky, and scale invariant models on 643 grid.

Table II. Model coefficients obtained from the dynamic approach and estimate
of the deviation from the scale-invariancy condition.

% Deviation

[(
1 − C �̃

s

C �̂
s

)
∗ 100

]
Model Coefficient (Cs)

Smagorinsky 0.0255 —
Dynamic (323) 0.0262 +27 %
Dynamic (483) 0.0254 +7 %
Dynamic (643) 0.0246 −6 %
Scale invariant (643) 0.027 +6 %

4. CHANNEL FLOW

The filtered Navier–Stokes equations (Equation (1)) have been solved using pseudo-spectral method,
where fast Fourier transform is used in the homogeneous directions (x–z plane) and Chebyshev
polynomials in the wall-normal direction (y), and the time stepping is performed using second-
order Adams–Bashforth method. Interested readers are referred to Bhushan and Warsi [33] for the
details of the numerical scheme. The dimensions of the channel considered for the simulations
are same as that of the DNS case [32] (4�× 2× 4

3�) along the streamwise (x), wall-normal (y)
and spanwise (z) directions, respectively, which is discretized using 32× 65× 32 grid points. In
the wall-normal directions the grid stretching is controlled by the Gauss–Lobatto points which
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yields fine resolution of y+ = 0.21 close to the wall and y+ = 8.83 in the middle of the channel.
The flow is governed by the constant pressure gradient applied along the streamwise direction,
which is determined by the Reynolds number of the flow specified to be Re= 3260 (equivalent to
Re� = 180.0 based on half channel width).
The numerical simulations were performed using the constant coefficient (Cs = 0.01 [18])

Smagorinsky model (Equations (2) and (3)), standard dynamic model (Equations (7)–(9)), a priori
scale-variant formulation of dynamic model i.e. Equations (7), (9) and (10) (Meneveau–Lund [28]
approach) and Equations (7), (9) and (11) (proposed approach), and the a posteriori scale-variant
formulation i.e. Equations (12) and (10) (Meneveau–Lund) and Equations (12) and (11) (proposed
approach) (cf. table for model formulations). Simulation was also performed without any SGS
model referred to as no-model, results of which emphasize the effect of SGS modelling.

The results suggest that the stability of the dynamic model is highly dependent on the ratio of

the filter width or the factor F =C �̃
s /C�

s (in Equation (7)) for the scale-variant formulation. The
tensor L was found to be negatively correlated with the rate of strain tensor D (in an averaged
sense), so the positivity of the model coefficient is maintained as long as the tensor M maintains
a positive sign. From Equation (7) we can observe that the first term (without the factor F) on the
right is smaller than the second term. Thus, to maintain the positivity the factor F should be larger
than 1. Although it is difficult to quantify (locally) the exact minimum value of the factor F , it
must be emphasized that the key to the robustness of dynamic model is the specification of factor
to 4, as used in engineering applications [20, 22].

In the Meneveau–Lund formulation the ratio (Equation (10)) varied from 1 in the vicinity of the
wall to 1.2 in the centre of the channel. This ensured the positivity of the tensor M and thus of
the model coefficient Cs. However, when Equation (11) was used the factor F varied from 1 to 2
(as shown in Figure 3) which leads to negative values of the model coefficients in the sublayer and
buffer layer, thereby leading to numerical instability. Experiments were also performed with simple
clipping which showed significant improvement of the results over the dynamic model, and the
model coefficients were found to be close to the optimum value of 0.01 in the log layer. However,
a posteriori formulation is preferred as it does not involve any such numerical instability (or ad hoc
criterion) and provides the best results. A posteriori formulation of the Meneveau–Lund approach
did not provide significant improvement of the results as the ratio (Equation (10)) was quite small
(close to 1) to provide any significant change in the model coefficients. Here, only the key results
are presented to emphasize the improvement of the results based on scale-variant formulation. The
results referred to as Meneveau–Lund approach are based on the a priori formulation, whereas
scale-variant approach refers to the proposed formulation applied a posteriori. Here the results are
presented for the dimensional quantities, as the flow parameters vary significantly for different SGS
models (cf. Table III), which tends to obscures the differences between the DNS and the LES results.
Whenever the non-dimensionalization is required such as calculation of y+, DNS data are used.

4.1. Mean flow

The mean streamwise velocity profile (Figure 2) shows that the no-model case leads to smaller flow
velocity in the log layer. The standard dynamic model improves the result in the correct direction,
but still the velocities are less than that of the DNS case. The velocity profile near the wall is
well predicted by the dynamic model, whereas the no-model overpredicts the velocity slightly.
Smagorinsky model on the other hand compares well with the DNS results towards the centre of
the channel (y+>70). However, close to the wall the excessive dissipation from the model causes
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Table III. Channel flow parameters predicted by subgrid stress
models.

Model �wall Re� U−1
�

DNS 0.002976 178.0 18.33
No-model 0.0032 184.42 17.68
Smagorinsky 0.00273 170.34 19.14
Dynamic 0.00296 177.36 18.38
Scale variant 0.00296 177.56 18.36

Figure 2. Mean streamwise velocity profiles obtained from different LES runs compared with DNS data.

the velocity profile to deviate from the DNS profile. The Meneveau–Lund modification does not
provide results much different from the standard dynamic model. The best profile is obtained by
the scale-variant model, i.e. Equations (12) and (11) coupled model. The near wall behaviour of the
models are best quantified by the wall stress as shown in Table I. Both the scale-variant, dynamic,
and Meneveau–Lund modification models compares exactly with the DNS values, Smagorinsky
model underestimates the stresses and no-model overestimates the stresses.

Composite of mean profile and wall stress results suggests that the dynamic model coefficients
have correct behaviour in the vicinity of the wall, whereas the Smagorinsky coefficient are correct
in the log layer. The dynamic model coefficient profile in Figure 3(a) elucidates the reasons for the
discrepancy. As observed the model coefficient compares well with the y+(3/2)

/�2 scaling close
to the wall, however, in the centre of the channel the coefficient is much smaller (0.004 compared
to optimum value of 0.01) away from the wall [18]. The model coefficients obtained from the
scale-variant approach has the ideal behaviour as it retains the scaling of the dynamic approach in
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Figure 3. (a) Model coefficient profile, —-: y+(3/2)/�2 scaling; - - - : scale-variant; ◦: standard
dynamic approach; �: Meneveau–Lund modification; and (b) profile of the factor F =C �̃

s /C�
s

for the scale-variant model, Equation (11).

the sublayer and buffer layer and provides coefficient close to 0.01 in the log layer. The key to this
improved coefficient profile is the variation of the factor F along wall-normal direction, shown
in Figure 3(b). The factor is 1.05 in the buffer layer, which is close to the expected value of 1.0;
as in the near-wall region the turbulent scales are smaller than the grid scales and thus the model
coefficient must behave like the Reynolds averaged (RANS) coefficients. The factor transitions
smoothly to a stable value of 2.0 in the log layer.

The dissipation profile when compared to the net DNS dissipation (in Figure 4, only the dynamic
and scale-invariant model results are presented) shows that the no-model overestimates its value
close to the wall and underestimates in the buffer and lower-log layer (50>y+>10). Similar
behaviour is also observed for the dynamic model. For the Smagorinsky model, the nature is
reversed as it overestimates the dissipation in the log layer and underestimates in buffer layer.
It must be noted that the total dissipation profile includes the viscous dissipation which is accounts
for the mean velocity profile. The SGS dissipation for the Smagorinsky model is of the same order
of the viscous dissipation in the log layer, unlike the dynamic model where the SGS dissipation is
almost negligible. Scale-invariant model shows an intermediate behaviour of the SGS dissipation
and two models and has good agreement with the DNS data in the buffer and lower log layer for
the total dissipation.

The subgrid scale dissipation was further decomposed into two components (�FS: mean Strain
dissipation and �FS: redistribution of turbulent kinetic energy within turbulence spectrum) following
Hartel and Kleiser [34] and Sagaut et al. [35], in order to analyse the backscatter capability of the
model. It is expected that the �MS should have negative values in the buffer layer region, however, as
seen in Figure 5, the scale-invaraint model is not able of introducing backscatter capability in the dy-
namic model. This behaviour is expected as the underlining model is the dynamic approach and the
model coefficients have been adjusted a posteriori to account for accurate amount of net dissipation.
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Figure 4. Viscous, SGS and total (SGS + viscous) dissipation profiles from the SGS model runs
compared with DNS values: 1/Re(�u/�y)2.

Figure 5. �FS profile for the dynamic and scale-invariant models. The dissipation
has been normalized by u� and Re�.
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Figure 6. Viscous shear, SGS shear, and resolved shear stress profiles obtained from the LES runs compared
with DNS viscous stress profile: (1/Re)�u/�y.

The behaviour of the various models are further emphasized from the shear stress profiles in
Figure 6 (only the dynamic and scale-variant results have been shown). No-model case has the
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Figure 7. Energy spectra for the: (a) streamwise; (b) wall-normal; and (c) spanwise velocities along
the streamwise direction. Results are compared for the different model runs and the DNS data at

three locations y+ = 30, 78, and 98.

most resolved stresses followed by the dynamic, the scale-variant, and the Smagorinsky model. The
Smagorinsky model shows large SGS stress even in the buffer layer. This component of stress is
almost negligible in the dynamic model, whereas the scale-variant model has reasonable profile. On
comparison of the viscous stresses with the DNS value, we observe that the no-model overestimates
the stresses in the sublayer and underestimates in the sublayer and log layer. Similar behaviour is
also exhibited by the dynamic model, whereas for the Smagorinsky model the nature is reversed.
The scale-variant model is in good agreement with the DNS data in both the sublayer and buffer
layer and found best among all the models considered.
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Figure 7. Continued.

4.2. Energy spectra

The capability of a LES model to capture the resolved scales of motion can be best depicted by the
energy spectra. In Figure 7 the spectra for the velocity correlation along the streamwise direction
have been compared with the DNS results. The results have been shown only after the buffer
layer, where the turbulence is fully developed. As evident, both the no-model and dynamic models
overpredict the energy at all the three locations and the velocity components. The no-model case
overpredicts the energy the most followed by the dynamic model, however, in the buffer layer region
these results are better in comparison to the Smagorinsky model which underestimates the energy
considerably. The Smagorinsky model is better for the streamwise velocity component for the other
two locations y+ = 78 and 98, but not for the spanwise and wall-normal velocity components where
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Figure 7. Continued.

the energy is underestimated. The scale-variant model is in good agreement with the DNS profile
at all the three locations for the streamwise components and in the log-layer region for the other
two velocity components. The scale-invariant model, however, underestimates the energy for the
wall-normal and spanwise components for the y+ = 30 location.

4.3. Second-order statistics

In Figure 8 the second-order correlations including the shear stress, anisotropic components of u′
rms,

v′
rms, and w′

rms have been compared with the DNS data (cf. Bhushan and Warsi [4] for definition of
anisotropic components). As seen the no-model overestimates the shear stress and the Smagorinsky
model underestimates its values and does not capture the peak accurately. The dynamic model
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Figure 8. Profile of the second-order statistics: (a) shear stress, anisotropic component; (b) u′
rms; (c) v′

rms;
and (d) w′

rms compared with the corresponding DNS values.

and Meneveau–Lund modification are in good agreement, however, a perfect match is obtained
for the scale-variant model. The (RMS) profile for the streamwise velocity component obtained
from both the no-model and the dynamic model is almost the same and do not capture the peak
very well. The Smagorinsky model does not compare well either and peaks for higher y+. For
the wall-normal and spanwise direction components dynamic model is better than the no-model
case but again peaks early. The Smagorinsky model fails to capture the profile for these velocity
components too. The scale-variant model capture the peaks (for all three velocity components) better
than other models, but overestimates the magnitude. The Meneveau–Lund modification in these

Copyright q 2007 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Fluids 2007; 54:1075–1095
DOI: 10.1002/fld



MODIFICATION TO THE DYNAMIC APPROACH 1091

cases does not show improvement over the dynamic model and thus corresponding results are not
presented.

4.4. Higher-order statistics

In this section the higher-order statistics i.e. the skewness and kurtosis of the velocity fluctuations
[4] have been compared with the DNS data in Figures 9 and 10, respectively. For these statistics a
perfect agreement between the LES and the DNS data is not expected as the subgrid contributions
cannot be estimated. However, assuming that the subgrid scales of motion are more isotropic

Figure 9. Skewness profile for the streamwise, wall-normal, and spanwise velocity fluctuations as obtained
by the LES runs and compared with the DNS data.
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Figure 10. Flatness profile for the streamwise, wall-normal, and spanwise velocity fluctuations as obtained
from the LES runs and compared with the DNS data.

and homogeneous in nature, their effect should be to decrease skewness and increase kurtosis.
The streamwise velocity fluctuation skewness profile for all the model runs is in good agreement
with the DNS data, except for the Smagorinsky model in the near wall region. For the wall-
normal velocity component, the scale-variant model performs the best, whereas other models fail
to predict the positive skewness in the sublayer region. However, the negative skewness in the buffer
layer is depicted by all the models. For the spanwise velocity component, the skewness profile is
almost zero because of flow symmetry which is depicted best by the scale-variant and the standard
dynamic models.
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The streamwise velocity fluctuation flatness is overpredicted by all the models except the
Smagorinsky model, overprediction is least by the scale-variant model. Overall, the nature of
the flatness profile is in good agreement with the DNS results except for the Smagorinsky model.
The wall-normal velocity flatness diverge near the wall, such divergence is because of the presence
of fine scale motions in the DNS, which is not captured in the LES. The scale-variant model leads to
maximum flatness followed by the Smagorinsky model. The flatness profile for the no-model case
does not show significant divergence, whereas the dynamic model peak is too low. For the spanwise
velocity components both the scale-variant and the dynamic model results are close to each other
and in good agreement with DNS data. Here again, the no-model peak is low and Smagorinsky
model does not capture the profile.

5. CONCLUSIONS

The dynamic Smagorinsky model has been applied to isotropic decaying turbulence and to a
channel flow simulation at low Reynolds number (Re� = 180). For the isotropic turbulence case,
the dynamic model predicts the model coefficient to be scale invariant (error upto only ±5%)
as expected. However, for the channel flow, where the scale invariancy is not satisfied along
the wall-normal direction, the dynamic model fails to capture the turbulent statistics accurately.
The dynamic model was modified by using the (a priori) scale-variancy condition, proposed by
Meneveau–Lund [28], which does not show sufficient improvement in the results. Thus, a new scale-
variant formulation based upon a dissipation argument is proposed. Application of the proposed
modification leads to correct behaviour of the model coefficient in the log layer but introduces
instability in the sublayer and buffer layer. From the numerical experiments it was observed that the
best (numerically stable) results are obtained when scale-variancy conditions are applied a posteriori
coupled with the Chen et al. [29] hypothesis. A posteriori application of the Meneveau–Lund
approach did not improve the results in this framework too. However, the proposed modification
shows improvement for all flow statistics, such as the mean streamwise flow profile, stress and
dissipation profiles, energy spectra, and higher flow statistics. The model coefficient based on the
scale-variant dynamic approach shows correct scaling close to the wall and achieves the optimum
value of 0.01 in the middle of the channel, where the latter is underestimated by the standard dynamic
approach.

The detailed analysis of the channel flow results shows that the scale-variant condition is
important for the dynamic approach, and the simple modification proposed here improves the
results significantly. The proposed modification still cannot introduce backscatter capability to
the dynamic model. In the present paper the scale-variant dynamic approach was applied to the
Smagorinsky model, but this method can be also be applied to non-linear models.

It must be noted that the dissipation-based argument put forward in the paper is valid only
for the equilibrium turbulence, where subgrid dissipation is constant in inertial subrange. How-
ever, for the low Reynolds number channel flow case considered here, the flow does not exhibit
such inertial subrange. In the non-equilibrium flows a power law can be assumed for the energy
spectrum [36],

E(k) � k�

which Terracol and Sagaut [36], using dimensional analysis of eddy viscosity (cf. Terracol
and Sagaut [36] for details), gives the following scaling of the mean SGS dissipation based on
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sharp-cutoff filter width (kc)

�(kc) � k(3�+5)/2
c

Introducing the following integral in the subgrid scale dissipation formulation:

〈2D : D〉 =
∫ kc

0
k2E(k)

and noting that kc = �/� we obtain

C�
s �2〈[2D : D]〉(3/2) � k(3�+5)/2

�̃

Thus, the definition of SGS itself should satisfy the correct dissipation scaling for the non-
homogeneous case. This also implies scale invariancy of the model coefficient, which is hardly the
case. The proposed modification thus provides a mechanism to incorporate the departure from the
theoretical scale invariancy. However, in the process dissipation scaling is compromised. Although
the proposed modification shows significant improvement in results, inconsistency in the approach
can be rectified by using correct dissipation ratio following Terracol and Sagaut [36], for complete-
ness. But would require additional numerical expense associated with another explicit filtering, in
order to determine dissipation scaling.
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